KnightCap:A chesgrogramthatlearnsby
combiningTD()) with minimaxsearch

JonatharBaxter
Departmenbf System<£Engineering
AustralianNationalUniversity
Canberra200,Australia

Andrew Tridgell
Departmenbf ComputerScience
AustralianNationalUniversity
Canberra200,Australia

Lex Weaver
Departmenbf ComputerScience
AustralianNationalUniversity
Canberra200,Australia
{Jon. Baxt er, Andrew. Tri dgel | , Lex. Weaver }@nu. edu. au

November27,1997

Abstract

In this paperwe presenfTDLeaf()\), a variationon the TD()\) algorithmthat
enablest to be usedin conjunctionwith minimax search.We presentsomeex-
perimentsin which our chessprogram,“KnightCap; usedTDLeaf(\) to learn
its evaluationfunction while playing on the FreeIneternetChessSener (FICS,
fics.onenet. net). It improved from a 1650ratingto a 2100ratingin just
308gamesand3 daysof play. We discusssomeof thereasongor this successnd
alsotherelationshipbetweerour resultsand Tesaurcs resultsin backgammon.

1 Intr oduction

TemporalDifferencelearningor TD(}), first introducedby Sutton[9], is an elegant
algorithmfor approximatingthe expectedlong term future cost (or cost-to-g9g of a
stochasticdynamicalsystemas a function of the currentstate. The mappingfrom
statedo future costis implementedy a parameterizefunction approximatosuchas
a neuralnetwork. The parametersre updatedonline after eachstatetransistion,or
possiblyin batchupdatesfter several statetransitions.The goal of the algorithmis to



improve the costestimatesasthe numberof obsered statetransitionsandassociated
costsincreases.

Perhapshe mostremarkablesuccessf TD()) is Tesaurcs TD-Gammonaneural
networkbackgammomplayerthatwastrainedfrom scratchusingTD()) andsimulated
self-play TD-Gammoris competitive with the besthumanbackgammoiplayers[11].
In TD-Gammonthe neuralnetworkplayeda dual role, both asa predictorof the ex-
pectedcost-to-goof the positionandasa meango selectmoves. In ary positionthe
next move waschosergreedilyby evaluatingall positionsreachabldrom the current
state,andthenselectingthe move leadingto the positionwith smallestexpectedcost.
The parametersf the neuralnetworkwereupdatedaccordingo the TD(A) algorithm
aftereachgame.

Althoughtheresultswith backgammorarequite striking, thereis lingering disap-
pointmentthat despiteseveral attemptsthey have not beenrepeatedor otherboard
gamessuchasothello,Goandchesq12, 15, 8].

Mary authorshave discussedhe peculiaritiesof backgammornhat makeit par
ticularly suitablefor TemporalDifferenceearningwith self-play[10, 8, 7]. Principle
amongtheseare speedof play: TD-Gammonlearntfrom several hunderedhousand
gamef self-play representatiorsmoothnesghe evaluationof a backgammoiposi-
tion is a reasonablysmoothfunction of the position(viewed, say asa vectorof piece
counts)makingit easietto find a goodneuralnetworkapproximationandstodastic-
ity: backgammoris a randomgamewhich forcesat leasta minimal amountof explo-
ration of searchspace.

As TD-Gammonin its original form only searchedne-ply ahead,we feel this
list shouldbe appendedvith: shallowseach is goodenoughagainsthumans There
aretwo possiblereasondor this; eitherone doesnot gain a lot by searchingdeeper
in backgammor(questionablayiven that recentversionsof TD-Gammonsearchto
three-ply and this significantlyimproves their performance)or humansare simply
incapableof searchingdeeplyand so TD-Gammonis only competingin a pool of
shallov searchers.Althoughwe know of no psychologicalstudiesinvestigatingthe
depthto which humanssearchin backgammonit is plausiblethatthe combinationof
high branchingfactor andrandommaove generatiormakesit quite difficult to search
more than one or two-ply ahead(high branchingfactor alone cannotbe the reason
becausénumanssearchvery deeplyin Go, a gamewith a similar branchingfactorto
backgammon).

In contrastfinding a representatiofor chesspthelloor Go which allows a smalll
neuralnetworkto ordermovesat one-plywith nearhumanperformances afar more
difficult task. It seemshatfor thesegamesyeliabletacticalevaluationis difficult to
achieve without deeplookahead As deeplookaheadnvariablyinvolvessomekind of
minimaxsearchwhichin turnrequiresan exponentialincreasen the numberof posi-
tions evaluatedasthe searchdepthincreasesthe computationatostof the evaluation
functionhasto below, ruling outthe useof neuralnetworks.Consequentlynostchess
andothelloprogramsaiselinearevaluationfunctions(thebranchingactorin Gomakes
minimaxsearcho ary significantdepthnearlyinfeasible).

In this paperwe introduceTDLeaf(\), avariationonthe TD()) themethatcanbe
usedto learnan evaluationfunction for usein deepminimax search. TDLeaf()) is
identicalto TD(A) exceptthatinsteadof operatingon the positionsthatoccurduring



the game,it operate®n the leaf nodesof the principal variation of aminimaxsearch
from eachposition.

To testthe effectivenessof TDLeaf(h), we incorporatedt into our own chessro-
gram— KnightCap. KnightCaphasa particularlyrich boardrepresentatioenabling
relatively fast computationof sophisticategositionalfeatures. We trained Knight-
Caps linear evaluationfunction using TDLeaf(\) by playing it on the Freelnternet
ChessSener (FICS, fi cs. onenet . net) and on the Internet ChessClub (ICC,
chesscl ub. conj. Internetplay wasusedto avoid the prematurecorvergencediffi-
cultiesassociatedelf-play:. The main successtory we reportis thatstartingfrom an
evaluationfunctionin which all coeficientswere setto zeroexceptthe valuesof the
pieces KnightCapwentfrom a 1650-ratecblayerto a 2100-ratecplayerin just three
daysand308 games KnightCapis anongoingprojectwith new featuresbeingadded
to its evaluationfunction continually We useTDLeaf(\) andInternetplay to tunethe
coeficientsof thesefeatures

As thispapemwasgoingto presswve discovered[1] in whichthesamedeawasused
to tunethe materialvaluesin a chessgprogramthatonly operatedvith materialvalues.
Thelearntvaluescameout very closeto the“traditional” chessvaluesof 1:3:3;5:9for
pawvn,knight,bishop,rook,queebut werelearntby self-playratherthanon-line play:.
With KnightCap,we found self-play to be worsethan on-line learning (seesection
4), but KnightCap’s performancavasbeingmeasure@gainsthe on-line players,not
againstfixed programasin [1].

Theremainderof this paperis organisedasfollows. In section2 we describethe
TD()) algorithmasit appliesto games. The TDLeaf(\) algorithmis describedn
section3. Somedetailsof Knightcaparegivenin sectiond.1. Experimentatesultsfor
Internet-playwith chessaregivenin sections4. Section5 containssomediscussion
andconcludingremarks.

2 TheTD(A) algorithm applied to games

In this sectionwe describethe TD(A) algorithmasit appliesto playingboardgames.
We discusghealgorithmfrom the point of view of anagentplayingthegame.

Let S denotethe setof all possibleboardpositionsin the game.Play proceedsn
a seriesof movesat discretetime stepst = 1,2,.... At time+¢ the agentfindsitself
in somepositionz; € S, andhasavailablea setof moves, or actionsA,, (the legal
movesin positionz;). The agentchoosesanactiona € A,, andmakesa transition
to statez,; with probability p(z:, z:41,a). Herexz.;, is the positionof the board
afterthe agents move andthe opponentsresponseWhenthe gameis over, theagent
recevesascalareward,typically “1” for awin, “0” for adrav and“-1” for aloss.

For easeof notationwe will assumall gameshave afixedlengthof N (thisis not
essential)Let r(z ) denotetherewardrecevedattheendof the game.If we assume
thatthe agentchoosests actionsaccordingto somefunctiona(z) of the currentstate

1Randomizingnovechoiceis anothemay of avoiding problemsassociateavith self-play(this approach
hasbeentried in Go [8]), but the advantageof the Internetis that more informationis providedby the
opponentplay.



z (sothata(z) € A;), theexpectedrewardfrom eachstatex € S is givenby
J* () = Epyler(en), (1)

wherethe expectationis with respecto thetransitionprobabilitiesp(z;, ¢ 41, a(zt))
and possiblyalsowith respectto the actionsa(z;) if the agentchossests actions
stochastically

For vary large statespacesS it is not possiblestorethe valueof .J*(z) for every
z € S, soinsteadwe mighttry to approximate/* usingaparameterize€unctionclass
J: S x RF = R, for examplelinearfunction,splines neuralnetworks gtc. J (-, w) is
assumedo bea differentiablefunctionof its parameterss = (w1, ..., wg). Theaim
is to find a parametewectorw € R* thatminimizessomemeasureof error between
theapproximation/ (-, w) and.J* (). TheTD()) algorithm,whichwe describenow, is
designedo do exactly that.

Supposes, ..., zN_1, N iISasequencef statesn onegame.For agivenparam-
etervectorw, definethetempoal differenceassociateavith thetransitionz; — z¢41

by
dy == j(:ct+1,w) — j(:ﬂt, w). (2)

Notethatd; measureshe differencebetweerthe reward predictedoy J(-, w) attime
t + 1, andthereward predictedby J (-, w) attime¢. Thetrue evaluationfunction .J*
hasthe property

El‘t+1|.’l}t [J*($t+1) - J* (It)] = O’

soif f(~, w) is agoodapproximationto J*, F,, |z,
this obserationthatmotivatesthe TD(}) algorithm.

For easeof notationwe will assumehat J(zy,w) = r(zxy) always,sothatthe
final temporaldifferencesatisfies

d; shouldbe closeto zero. It is

dy_1 = j(mN,w) — j(mN_l,w) =r(zy) — J(zn-1,w).

Thatis, dy _ 1 isthedifferencebetweerthetrueoutcomeof thegameandtheprediction
atthepenultimatemove.

At the end of the game,the TD()) algorithmupdateghe parametewectorw ac-
cordingto theformula

N-1

N—1
w::w—}—aZVj(xt,w) Z)\j_tdt 3)
Jj=t

t=1

whereV J (-, w) is thevectorof partialderivativesof .J with respecto its parameters.
The positive parameter controlsthe learningrateandwould typically be “annealed”
towardszeroduring the courseof a long seriesof games. The parameter\ controls
the extent to which temporaldifferencegropagatébackwardsn time. To seethis,



comparezquation3) for A = 0:

N-1
wi=w+ a E Vj(;rt, w)d,

t=1

N-1
—w+a E Vj(;rt, w) {JN(;L‘H_l, w) — N(rt, w)} 4)
t=1
and\ = 1:
N-1 .
w::w—i—aZVJ(:bt,w) {r(xN)—J(:L‘t,w)} . (5)

t=1

Considereachterm contrituting to the sumsin equationg4) and(5). For A = 0 the
parametewectoris beingadjustedn sucha way asto move J(z;, w)—the predicted
rewardattimet—closerto .J (z, 1, w)—thepredictecrewardattimet + 1. In contrast,
TD(1) adjuststhe parametewectorin sucha way asto move the predictedreward at
time stept closerto thefinal rewardattime step/N. Valuesof A betweerzeroandone
interpolatebetweerthesetwo behaiours.

Successk parameteupdatesaccordingo the TD(A) algorithmshould,overtime,
leadtoimprovedpredictionsof theexpectedeward.J (-, w). Providedtheactionsa(z;)
areindependenof the parametewectoruw, it canbe shavn thatfor linear J (-, ), the
TD()) algorithmcorvergesto a nearoptimal parametewvector [14].  Unfortunately
thereis no suchguaranteéf .J(-, w) is non-linear[14], or if a(z;) dependon w [2].
However, despitethe lack of theoreticalguaranteetherehave beenmary successful
applicationsof the TD(A) algorithm[3].

3 Minimax Searchand TD(A)

For mostgamesary actiona takenin statex will leadto predeterminedtatewhich
we will denoteby z/,. Onceanapproximation/(-,w) to J* hasbeenfound, we can
useit to chooseactionsin statex by picking theactiona € A, whosesuccessostate
z'minimizesthe opponents expectedrewardf:

a*(z) = angmin, ¢, J(z}, w). (6)

This wasthe stratgy usedin TD-Gammon.Unfortunately for gamedike othello
andchesst is very difficult to accuratelyevaluatea positionby looking only onemave
or ply ahead.Most programsor thesegamesemploysomeform of minimaxsearch.
In minimaxsearchpnebuilds atreefrom positionz by examiningall possiblemoves
for the computerin that position,thenall possiblemovesfor the opponentandthen
all possiblemovesfor the computerandso on to somepredeterminediepthd. The
leaf nodesof thetreearethenevaluatedusinga heuristicevaluationfunction (suchas

2If successostatesare only determinedstochasticallyby the choiceof a, we would choosethe action
minimizing theexpectedewardoverthe choiceof successostates.



Figurel: Full breadth,3-ply searchtreeillustrating the minimax rule for propagat-
ing values.Eachof the leaf nodes(H-0) is givena scoreby the evaluationfunction,

f(~, w). Thesescoresarethenpropagatedbackup thetreeby assigningo eachoppo-
nents internalnodethe minimum of its children's values,andto eachof our internal
nodesthe maximumof its children’s values. The principle variationis thenthe se-
guenceof bestmovesfor eithersidestartingfrom theroot node,andthis is illustrated
by adashedinein thefigure. Notethatthe scoreattherootnodeA is theevaluationof

theleaf node(L) of the principalvariation. As thereareno ties betweenary siblings,
thederivative of A’'s scorewith respecto theparameters is justV.J (L, w).

f(~, w)), andthe resultingscoresarepropagatedbackup the treeby choosingat each
stagethe move which leadsto the bestpositionfor the playeronthe move. Seefigure
1 for anexamplegametreeandits minimax evaluation. With referenceo thefigure,
notethatthe evaluationassignedo theroot nodeis the evaluationof the leaf nodeof
the principal variation; the sequencef movestakenfrom theroot to theleaf if each
sidechooseshe bestavailablemove.

In practicemary engineeringricks are usedto improve the performanceof the
minimaxalgorithm,a3 beingthe mostfamous. .

Let J,(z,w) denotethe evaluationobtainedfor statex by applying./(-, w) to the
leaf nodesof a depthd minimaxsearchfrom z. Our aimis to find a parametewector
w suchthat.J4(-, w) is agoodapproximatiorto the expectedreward .J*. Oneway to
achieve thisis to applythe TD()) algorithmto J4(z, w). Thatis, for eachsequencef
positionsz, .. ., 2y in agamewe definethetemporaldifferences

dy == jd(l‘H_l, w) — jd(l‘t, w) (7
asperequation(2), andthenthe TD()) algorithmfor updatingthe parametewectorw
becomes

N-1 N-1
wi=w+ E VJa(ze, w) E M ~td, (8)
Jj=t

t=1

Oneproblemwith equation(8) is thatfor d > 1, fg(m, w) is notanecessarila differ-
entiablefunctionof w for all valuesof w, evenif J(-, w) is everywheredifferentiable.



.
7

B O K [ M [N [0

4 -9 10 8 4* 2 -9 5

Figure2: A searchtreewith a non-uniqueprincipal variation (PV). In this casethe
derivative of therootnodeA with respecto theparametersf theleaf-nodeavaluation
functionis multi-valued eitherV.J(H, w) or V.J (L, w). Exceptfor transpositiongin
whichcaseH andL areidenticalandthederivativeis single-valuedaryway), such“col-
lisions” arelikely to beextremelyrare,soin TDLeaf(A) we ignorethemby choosinga
leaf nodearbitrarily from the availablecandidates.

This is becausdor somevaluesof w therewill be “ties” in the minimaxsearchj.e.
therewill bemorethanonebestmove availablein someof the positionsalongtheprin-
cipal variation,which meanghatthe principal variationwill notbe unique(seefigure
2). Thus,the evaluationassignedo the root node, J,(z, w), will be the evaluationof
ary oneof anumberof leaf nodes.

Fortunately undersomemild technicalassumptionsn the behaiour of J(z, w),
it canbe shawn that for eachstatez, the setof w € R* for which J,(z, w) is not
differentiablehaslLebesguemeasurezero. Thusfor all statese andfor “almostall”
w € R*, Jy(xz,w) is a differentiablefunction of w. Note that J4(z, w) is alsoa
continuougunctionof w whenever J(z, w) is acontinuougunctionof w. Thisimplies
thateven for the “bad” pairs (z, w), V.J4(z, w) is only undefinecbecauseét is multi-
valued. Thuswe can still arbitrarily choosea particularvalue for V.Jg(z, w) if w
happengo landon oneof the badpoints.

Basedon theseobsenationswe modified the TD(\) algorithmto take account
of minimax searchin the following way: insteadof working with the root positions
z1,...,zn, the TD(X) algorithmis appliedto the leaf positionsfound by minimax
searchfrom the root positions. We call this algorithm TDLeaf(\). Full detailsare
givenin figure3.

4 Experimentswith Chess

In this sectionwe describehe outcomeof severalexperimentsn whichthe TDLeaf(}\)
algorithmwas usedto train the weightsof a linear evaluationfunctionin our chess
program‘KnightCap”.



Let J(-,w) be a classof evaluation functions parameterizechy w € R*. Let
x1,...,zx be N positionsthat occurredduring the courseof a game,with r(zx)
the outcomeof thegame.For notationalcorveniencesetJ (zn, w) := r(zn).

1. For eachstatez;, cqmputefd(zi, w) by performingminimaxsearcho depthd
from z; andusing J(-, w) to scorethe leaf nodes. Note thatd may vary from
positionto position.

2. Let z} denotethe leaf nodeof the principle variationstartingat z;. If thereis
morethanoneprincipal variation,choosea leaf nodefrom the available candi-
datesatrandom.Notethat

Ja(wi, w) = J(x}, w). ©)
3. Fort =1,..., N — 1, computehetemporaldifferences:
di == j(miﬂ, w) — j(ri, w). (20)

4. Updatew accordingo the TDLeaf(\) formula:

N-1 N-1 )
wi=w+a Yy V(e w) [ Y N (11)
t=1 j=t

Figure3: TheTDLeaf(}\) algorithm




4.1 KnightCap

KnightCapis a reasonablysophisticateccomputerchessprogramfor Unix systems.
It hasall the standardalgorithmicfeaturesthat modernchessprogramstendto have

aswell asa numberof featuresthat are muchlesscommon. This sectionis meant
to give the readeran overview of the type of algorithmsthat have beenchosenfor

KnightCap. Spacelimitations prevent a full explanationof all of the describedea-

tures, an interestedreadershould be able find explanationsin the widely available
computerchessliterature (seefor example[5] and[4]) or by examining the source
code:http://wwsyseng. anu. edu. au/ | sg.

4.1.1 Board representation

This is whereKnightCapdiffersmostfrom otherchesgprograms.The principalboard
representationsedin KnightCapis thetopiecesarray Thisis anarrayof 32 bit words
with onewordfor eachsquareontheboard.Eachbit in aword representsneof the 32

piecesn the startingchesgosition(8 piecest 8 pavnsfor eachside).Bit ¢ onsquare
J is setif piecei is attackingsquarey.

Thetopiecesarrayhasprovedto be a very powerful representatioandallows the
easydescriptiorof mary evaluationfeaturesvhicharemoredifficult or too costlywith
otherrepresentations hearrayis updateddynamicallyaftereachmove in suchaway
thatfor the vastmajority of movesonly a small proportionof the topiecesarrayneed
bedirectly examinedandupdated.

A simpleexampleof how thetopiecesarrayis usedin KnightCapis determining
whethertheking is in check.Whereasanin_check()functionis oftenquite expensve
in chessprograms,in KnightCapit involvesjust onelogical AND operationin the
topiecesarray In a similar fashionthe evaluationfunction canfind commonfeatures
suchasconnectedooksusingjust oneor two instructions.

Thetopiecesarrayis alsousedto drive the move generatoandobviatesthe need
for a standardnove generatiorfunction.

4.1.2 Search algorithm

Thebasisof thesearchalgorithmusedin KnightCapis MTD(f) [6]. MTD(f) is alogical
extensionof the minimal-window alpha-betasearchthat formalisesthe placemenof
the minimal searchwindow to producewhatis in effect a bisectionsearchover the
evaluationspace.

The variationof MTD(f) that KnightCapusesincludessomecornvemgenceaccel-
erationheuristicsthat prevent the very slow convergencethat can sometimeglague
MTD(f) implementations.Theseheuristicsare similar in conceptto the momentum
termscommonlyusedin neuralnetworktraining.

TheMTD(f) searclalgorithmis appliedwithin astandardterative deepenindgrame-
work. The searchbeginswith the depthobtainedfrom the transpositiortablefor the
initial searchpositionandcontinuesuntil atime limit is reachedn the search.Search
orderingattherootnodeensureghatpartialply searctresultsobtainedvhenthetimer
expirescanbeusedquitesafely



4.1.3 Null moves

KnightCapusesa recursve null move forward pruningtechnique Whereasmostnull
move usingchesgprogramaiseafixed R value(thenumberof additionalplysto prune
whentrying a null move) KnightCapinsteadusesavariable R valuein anasymmetric
fashion.Theinitial R valueis 3 andthealgorithmthenteststheresultof thenull move
search.If it is the computersside of the searchandthe null move indicatesthat the
positionis “good” for the computerthenthe R valueis decreasedio 2 andthe null
move is retried.

Theeffect of this null move systemis thatmostof thespeedf a R = 3 systemis
obtainedwhile makingno morenull move defensie errorsthanan R = 2 system.It
is essentiallya pessimisticsystem.

4.1.4 Search extensions

KnightCapusesa large numberof searchextensionsto ensurethat critical lines are
searchedo sufficientdepth.Extensionsareindicatedthrougha combinationof factors
including check,null-move matethreats pavn movesto the lasttwo ranksandrecap-
ture extensions. In additionKnightCapusesa single ply razoringsystemwith a 0.9
pavn razoringthreshold.

4.1.5 Asymmetries

Thereare quite a numberof asymmetricsearchand evaluationtermsin KnightCap,
with a leaningtowardspessimistidie. careful)play. Apart from theasymmetricnull
move andsearchextensionssystemganentionedabove, KnightCapalsousesanasym-
metricsystento decidewhatmovesto try in thequiescesearchandseveralasymmetric
evaluationtermsin the evaluationfunction (suchasking safetyandtrappedpiecefac-
tors).

Whencombinedwith the TDleaf()algorithmKnightCapis ableto learnappropriate
valuesfor theasymmetrievaluationterms.

4.1.6 Transposition Tables

KnightCapusesa standardwo-deeptranspositiortable with a 128 bit transposition
tableentry Eachentryholdsseparatalepthandevaluationinformationfor the lower
andupperbound.

The ETTC (enhancedranspositiortable cutoff) techniqueis usedboth for move
orderingandto reducethe treesize. The transpositiortable is also usedto feedthe
booklearningsystemandto initialise the depthfor iterative deepening.

4.1.7 Move ordering

The move orderingsystemin KnightCapusesa combinationof the commonlyused
history; killer, refutationandtranspositiortable orderingtechniquesWith arelatively
expensve evaluationfunctionKnightCapcanafford to spenda considerablamountof
CPUtime on move orderingheuristican orderto reducethetreesize.

10



4.1.8 Parallel seach

KnightCaphasbeenwritten to take advantageof parallel distributed memorymulti-
computers,using a parallelismstratgy that is derived naturally from the MTD(f)
searchalgorithm. Somedetailson the methodologyusedand parallelismresultsob-
tainedareavailablein [13]. Theresultsgivenin this papemwereobtainedusingasingle
CPUmachine.

4.1.9 Evaluation function

The heartof ary chessprogramis its evaluationfunction. KnightCapusesa quite
slow evaluationfunctionthat evaluatesa numberof quite computationallyexpensve
features.

The mostcomputationallyexpensve partof the evaluationfunction s the “board
control”. This function evaluatesa control function for eachsquareon the boardto
try to determinewho controlsthe square Control of a squards essentiallydefinedby
determiningwhethera playercanusethe squareasa flight squarefor a piece,or if a
playercontrolsthe squarewith apavn.

Despitethe fact that the board control function is evaluatedincrementally with
the control of squaresonly beingupdatedwhena move affectsthe square the func-
tion typically takesaround30% of thetotal CPUtime of the program. This high cost
is consideredvorthwhile becauseof the flow-on effectsthat this calculationhason
otheraspectof the evaluationand search. Theseflow-on effectsinclude the ability
of KnightCapto evaluatereasonablyaccuratelythe presencef hung,trappedandim-
mobile pieceswhich is normally a severeweaknessn computerplay. We have also
notedthat the more accuratesvaluationfunction tendsto reducethe searchtree size
thusmakingup for thedecreasedodecount.

4.1.10 Modification for TDLeaf

Themodificationsmadeto KnightCapfor TDLeaf affecteda numberof the programs
subsystemsThe largestmodificationsgnvolvedthe parameterisationf the evaluation
functionsothatall evaluationcoeficientsbecameartof a singlelong weightvector
All evaluationknowledgecouldthenbe describedn termsof thevaluesin this vector

The next major modificationwasthe additionof the full boardpositionin all data
structuregrom which anevaluationvaluecouldbe obtained.Thisinvolvedthe substi-
tution of a structurefor the usualscalarevaluationtype, with the evaluationfunction
filling in the evaluatedposition and other boardstateinformation during eacheval-
uationcall. Similar additionswere madeto the transpositiortable entriesand book
learningdatasothatthe resultof a searchwould alwayshave availableto it the posi-
tion associateavith theleafnodein the principalvariation.

Theonly othersignificantmodificationthatwasrequiredwasanincreasen thebit
resolutionof the evaluationtype so thata numericalpartial derivative of the evalua-
tion function with respecto the evaluationcoeficient vector could be obtainedwith
reasonablaccuray.

11



4.2 Experimentswith KnightCap

In our main experimentwe took KnightCap’s evaluationfunction andsetall but the
materialparameterso zero. The materialparametersvereinitialised to the standard
“computer”values: 1 for a pawn, 4 for a knight, 4 for a bishop,6 for a rook and12
for a queen.With theseparametesettingsKnightCap(underthe pseodogm “Wimp-
Knight”) wassetplayingontheFreelnternetChessener (FICS,f i cs. onenet . net)
againsbothhumanandcomputeiopponentsWe playedKnightCapfor 25gameswith-
out modifying its evaluationfunctionsoasto getareasonabléeaof its rating. After
25 gamest hada blitz (fasttime control) rating of 1650 & 50, which putit at about
C-level humanperformancéthe standardieviation for all ratingsreportedn this sec-
tion is about50). Figure4 givesanexampleof thekind of gameit playsagainsitself
with just a materialevaluationfunction. We thenturnedon the TDLeaf(\) learning
algorithm,with A = 0.7 andthelearningratea = 1.0. Thevalueof A waschosen
heuristically basedn thetypical delayin movesbeforeanerrortakeseffect, while «
wassethighenoughto ensureapidmodificationof theparametersA coupleof minor
changedgo thealgorithmweremade:

e Theraw (linear) leaf nodeevaluationsJ(z!, w) were corvertedto a scorebe-
tween—1 and1 by computing

vh :=tanh {ﬂj(li,w)} .

This ensuredsmall fluctuationsin the relative valuesof leaf nodesdid not pro-
ducelarge temporaldifferences.The outcomeof the gamer(z ) wassetto 1
for awin, —1 for alossand0 for adrav. g wassetto ensurethata value of

tanh {ﬂj(rﬁ», w)} = 0.25 wasequialentto a materialsuperiorityof 1 pavn.

e Thetemporaldifferencesd; = v}, — v}, weremodifiedin thefollowing way:.
Negative valuesof d; wereleft unchange@sary decreasé theevaluationfrom
onepositionto thenext canbeviewedasmistake However, positive valuesof d;
canoccursimply becaus¢heopponenhasmadea blunder To avoid KnightCap
trying to learnto predictits opponents blunders,we setall positive temporal
differencedo zerounlessKnightCappredictedhe opponents move.

¢ Thevalueof apavn waskeptfixed atits initial valuesoasto allow easyinter-
pretationof weightvaluesasmultiplesof the pavn value.

Within 300 gamesKnightCaps rating had risen 2100, an increaseof 450 pointsin
threedays.At this pointKnightCap’s performancdeganto plateauprimarily because
it doesnot have an openingbook and so will repeatedlyplay into weaklines. We
have sinceimplementedan openingbook learningalgorithm and with this Knight-
Cap now plays at a rating of 2500 on the other major internetchesssener (ICC,
chesscl ub. conj. It regularly beatsinternationalMastersat blitz, andhasa sim-
ilar performanceo Crafty (the bestpublic domainprogram)at longertime controls.
We repeatedhe experimentusing TD(A) appliedto the root nodesof the search
(i.e. theactualpositionsasthey occurredn thegame)ratherthantheleaf nodesof the

12



principalvariation,andobsereda 200 pointratingrise over 300gamesA significant
improvementbut muchslowerthanTDLeaf(\) andalower peak.

Thereappeato beanumberof reasongor theremarkablegateatwhich KnightCap
improved.

1. As all thenon-materialveightswereinitially zero,evensmallchangesn these
weightscould causevery large changesn the relative ordering of materially
equalpositions. Henceeven after a few gamesKnightCapwas playing a sub-
stantiallybettergameof chess.

2. It seemgo beimportantthatKnightCapstartedoutlife with intelligentmaterial
parametersThis putit closein parametespaceo mary far superiorparameter
settings.

3. MostplayersonFICSpreferto play opponentsf similarstrengthandsoKnight-
Cap’s opponentdmproved asit did. This may have hadthe effect of guiding
KnightCapalonga pathin weightspacehatledto a strongsetof weights.

4. KnightCapwasnot “thrown in the deepend” againstmuchstrongeropponents,
henceit recei@d both positive andnegative feedbackrom its games.

5. KnightCapwasnot learningby self-play

To furtherinvestigateheimportanceof someof thesereasonsye conductedser-
eralmoreexperiments.

Goodinitial conditions.

A secondxperimentwasrun in which KnightCaps coeficientswereall initialisedto
thevalueof a pavn. Thevalueof a pavn needgo be positive in KnightCapbecause
it is usedin mary otherplacesin the code:for examplewe deemthe MTD searchto
have corvergedif o < 3 + 0.07+*PAWN. Thus,to setall parametergqualto the same
value,thatvaluehadto beapawvn.

Playingwith theinitial weightsettingKnightCaphadablitz ratingof aroundL250.
After morethan1000gameson FICSKnightCapsratinghasimprovedto about1550,
a300pointgain. Thisis amuchslowerimprovementhantheoriginal experiment.We
do notknow whetherthe coeficientswould have eventuallyconvemgedto goodvalues,
but it is clearfrom this experimentthat startingnearto a good setof weightsis im-
portantfor fastcorvergence.An interestingavenuefor further explorationhereis the
effect of A onthelearningrate. Becausehe initial evaluationfunctionis completely
wrong, therewould be somejustificationin settingh = 1 early on sothatKnightCap
only tries to predictthe outcomeof the gameandnot the evaluationsof later moves
(which areextremelyunreliable).

Positiveand nggativefeedbak

To furtherinvestigateheimportanceof balancedeedbackwe againinitialised every
parametein KnightCapsevaluationfunctionto thevalueof apavn, andthisweakver-
sionwasplayedagainstanotherversionwith muchstrongerparametesettings.Apart
from afew draws by repetitionin the opening,the weakversionlost every singleone

13



of 2811gamesAlthoughtheweakversionaftertrainingwasstrongethantheoriginal
pavn-weightversion,it wasstill averyweakplayer—for example,it would sacrificea
gueenfor aknight andtwo pavnsin mostpositions.The reasorfor theimprovement
over the pavn-weightversionwasthatthe trainedversionhadlearntincreasednate-
rial weightandhencewould tendto hangon to its materialwhereaghe pavn-weight
versionquite happilythrew its materialaway.

Onfacevalueit seemsemarkablehatthetrainedversionlearntarything usefulat
all by losing2811gameslIf every gameis lost, theonly fixed point of the TD(A) algo-
rithm (andthe TDLeaf(\) algorithm)is to valueevery positionasalossfrom theoutset.
In fact this is closeto the solutionfound by KnightCap: its evaluationof the starting
positionwas—9 pavnshby the endof the simulation(which givesavaluevery closeto
—1 aftersquashing)It achiered this primarily by exploiting the materialweightsand
two asymmetricpositionalfeatures:whetherthereare zero of the opponents pieces
attackingits own king, andwhethertherearezeroof its own piecesattackingthe op-
ponents king. KnightCaplearntcoeficientsfor thesefeaturesof —5.35 pawvns and
—3.23 pawvnsrepectvely, which meantthatary positionin which therewasno attack
on eitherking (like the startingposition),thesefeaturescontributed —8.58 pavnsto
KnightCapsevaluationfunction. The materialweightsincreasedecausés opponent
wasa strongplayersoin mostgameshe weakversionwould very soonbe down in
material,which encouragepositive materialparameterbecausehatgivesa negative
valuefor the position.

Self-Play

Learningby self-playwasextremelyeffectivefor TD-Gammonput asignificantreason
for this is the randomnes®f backgammorwhich ensureghatwith high probability
differentgameshave substantiallydifferentsequencesf moves. However, chesss a
deterministicgameand so self-play by a deterministicalgorithmtendsto resultin a
large numberof substantiallysimilar gamesThisis nota problemif thegamesseenn

self-playare“representatie” of the gamegplayedin practice but onecanseefrom the
examplegamen figure4 thatKnightCapsself-playgameswith only non-zeramaterial
weightsarevery differentto the kind of gameshumansf the sameevel would play.

To demonstratéhatlearningby self-playfor KnightCapis notaseffective aslearn-
ing againstreal opponentswe ran anotherexperimentin which all but the material
parametersvereinitialised to zeroagain, but this time KnightCaplearntby playing
againsttself. After 600gameqtwice asmary asin theoriginal FICS experiment) we
playedtheresultingversionagainsthe goodversionthatlearnton FICSfor a further
100gameswith theweightvaluesfixed. Theself-playversionscorednly 11%against
thegoodFICSversion.

In [1] positive resultsusing essentiallyTDLeaf and self-play (with somerandom
move choice)werereportedor only learningthematerialweights.However, they were
not comparingperformanceagainston-line players,but were primarily investigating
whethertheweightswould corverge to “sensible”valuesasleastasgoodasthe naive
(1,3,3,5,9)valuesfor (pavn,knight,bishop,rook,queerfdhey did). In view of these
positive results andour negative resultswith self-play furtherinvestigationis required
to determinehow critical on-linelearningis for goodplay.

14



KNIGHTCAP VvS. KNIGHTCAP

1. Na3Nc6 2. Nb5 Rb83. Nc3Ra84. Rb1d65. RalNa56. Nf3 Bd7 7. d3Be68.
Qd2Nf6 9.a3Nc610. Qe3Nb811. Nd4Bc812. Qf3Qd713. Nb3Nc614. Kd1l Ne5
15. Qf4 Ng6 16. Qg3c517. Ne4Nd5 18. Kd2 Qb519. Nc3 Nxc3 20. bxc3Qa621.
Rb1Kd8 22. Qf3 Ke823. Kd1 Qc624. KelBe625. Kd2 Kd7 26. Nalb6 27. Kel
Kc7 28. Rb2Ne529. Qxc6+Kxc6 30. Be3Kd5 31. Kd1 Nd7 32. Rb1Kc6 33. c4d5
34. cxd5+Bxd5 35. Bf4 Rd836. Rb2Nf6 37. Nb3Be638. KelKd5 39. a4Kc6 40.
c4Kd741.Bd2Ne842. Ra2Kc6 43. e4Kd7 44. Be2Rc845. Kd1 Kd8 46. Bf4 Nc7
47. NalNa648. Kc1 Ke849. Be3Rb850. Kbl Ra851. Bfl Nb452. Ra3Rb853.
Nc2 Na654. Ra2Bd7 55. Bf4 Rb756. Be3Nb857. d4 cxd458. Nxd4 Na659. Nb5
Nb4 60. Ra1Bxb561. cxb5Rd7 62. Kc1 Kd8 63. Bd2 Rc7+64. Kd1 Nc2 65. Ra2
Nd4 66. Be3Ne667. Bd3Kd7 68. Bc2Kc8 69. Ra3Kd8 70. Kc1 Rd771. Rc3Nd4
72.Rd3e573. Rhd1Bc5 74. Bxd4 exd4 75. Kd2 f6 76. Rb3Rb777. Bd3 g6 78. g3
Kc7 79. Ke2Kd7 80. Kf3 Rbb881. Kg4 Kc7 82.3

Figure4: Thefirst 82 movesof a gameby KnightCapagainsttself, whereboth sides
were using an evaluationfunction in which the only non-zeroparametersvere the
material coeficients. Sucha configurationgives KnightCapa blitz rating of about
16500n FICS, but as can be seenfrom the gameit plays nothing like a humanof
similarrating.

5 Discussionand Conclusion

We have introducedT DLeaf(}), avariantof TD(A) suitablefor trainingan evaluation
function usedin minimaxsearch.Theonly extra requiremenbdf the algorithmis that
theleaf-nodef the principalvariationsbe storedthroughouthegame.

We presentedsomeexperimentsin which a linear chessevaluationfunction was
trained by on-line play againsta mixture of humanand computeropponents. The
experimentshav boththeimportanceof “on-line” sampling(asopposedo self-play),
andtheneedto startneara goodsolutionfor fastcorvemgence.

We comparedrainingusingleafnodegTDLeaf(\)) with trainingusingrootnodes,
andfounda significantimprovementtrainingon theleaf nodesn chess.

We arecurrentlyinvestigatinghow well TDLeaf(\) worksfor Backgammonyvith
aview to understandinghe differencedetweerchessaandbackgammomandhow they
affectlearning.

Onthetheoreticakide,it hasrecentlybeenshovn that TD(X) corvergesfor linear
evaluationfunctions[14. An interestingavenuefor further investigationwould be to
determinewvhetherTDLeaf(\) hassimilar convergenceproperties.

References

[1] D.F. BealandM. C. Smith. LearningPiecevaluesUsing TemporalDifferences.
Journal of Thelnternational ComputeiChessAssociation1997.

15



[2] D. P BertsekasndJ. N. Tsitsiklis. Neuo-DynamicProgramming AthenaSci-
entific, 1996.

[3] L. P. Kaelbling, M. L. Littman,andA. W. Moore. Reinforcement.earning: A
Suney. Journal of Artificial IntelligenceReseath, 4:237—2851996.

[4] D.Levy andM. Newborn. How Computerdlay ChessW. H. FreemarandCo.,
1990.

[5] T. A. Marslandand J. Schadker. Computers Chessand Cognition Springer
Verlag,1990.

[6] A. Plaat,J. Schadfer, W. Pijls, andA. deBruin. Best-FirstFixed-DepthMinmax
Algorithms. Artificial Intelligence 87:255-2931996.

[7] J. Pollack,A. Blair, and M. Land. Coevolution of a BackgammorPlayer. In
Proceeding®f theFifth Artificial Life Confeence Nara,Japan1996.

[8] N. SchraudolphP. Dayan,andT. Sejnavski. TemporalDifferencelLearningof
PositionEvaluationin the Gameof Go. In J.Cowan,G. TesauroandJ. Alspector
editors,Advancesn Neuml Information ProcessingSystems, SanFransisco,
1994.MorganKaufmann.

[9] R. Sutton.Learningto Predictby the Methodof TemporalDifferencesMachine
Learning 3:9-44,1988.

[10] G.TesauroPracticalssuesn TemporaDifference_earning.MachinelLearning
8:257-2781992.

[11] G. Tesauro. TD-Gammon,a self-teachingbackgammonprogram, achiees
mastetlevel play. Neural Computation6:215-219,1994.

[12] S. Thrun. Learningto Play the Gameof Chess. In G. TesauroD. Touretzly,
andT. Leen,editors,Advancesn Neuial InformationProcessingSystemg, San
Fransisco1995.MorganKaufmann.

[13] A. Tridgell. KnightCap—A parallelchessprogramon the AP1000+. In Pro-
ceedingsof the Seventh Fujitsu Parallel ComputingWorkshop Canberra Asu-
tralia, 1997. ftp://samba.anu.edu.au/tridge/knighppcw97.ps.gzsourcecode:
http://wwwsysng.anu.edu.au/lsg.

[14] J.N. TsitsikilisandB. V. Roy. An Analysisof TemporalDifference_earningwith
FunctionApproximation. IEEE Transactionson AutomaticControl, 42(5):674—
690,1997.

[15] S. Walker, R. Lister, and T. Downs. On Self-LearningPatternsin the Othello
Board Gameby the Methodof TemporalDifferences.In C. Rowles,H. liu, and
N. Foo, editors,Proceedingof the 6th Australian Joint Confeenceon Artificial
Intelligence pages328—-333Melbourne 1993.World Scientific.

16



